Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727303

RESUMO

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Assuntos
Lesão Pulmonar Aguda , Colesterol , Interleucina-6 , RNA Interferente Pequeno , Animais , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Colesterol/metabolismo , Camundongos , Lipopolissacarídeos , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Linhagem Celular , Pulmão/patologia , Pulmão/metabolismo
2.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398538

RESUMO

Cholesterol siRNA conjugates attract attention because they allow the delivery of siRNA into cells without the use of transfection agents. In this study, we compared the efficacy and duration of silencing induced by cholesterol conjugates of selectively and totally modified siRNAs and their heteroduplexes of the same sequence and explored the impact of linker length between the 3' end of the sense strand of siRNA and cholesterol on the silencing activity of "light" and "heavy" modified siRNAs. All 3'-cholesterol conjugates were equally active under transfection, but the conjugate with a C3 linker was less active than those with longer linkers (C8 and C15) in a carrier-free mode. At the same time, they were significantly inferior in activity to the 5'-cholesterol conjugate. Shortening the sense strand carrying cholesterol by two nucleotides from the 3'-end did not have a significant effect on the activity of the conjugate. Replacing the antisense strand or both strands with fully modified ones had a significant effect on silencing as well as improving the duration in transfection-mediated and carrier-free modes. A significant 78% suppression of MDR1 gene expression in KB-8-5 xenograft tumors developed in mice promises an advantage from the use of fully modified siRNA cholesterol conjugates in combination chemotherapy.


Assuntos
Colesterol , RNA de Cadeia Dupla , Humanos , Animais , Camundongos , RNA Interferente Pequeno/metabolismo , Interferência de RNA
3.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139154

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.


Assuntos
Neoplasias Pulmonares , Triterpenos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Transdução de Sinais , Recidiva Local de Neoplasia/patologia , Transição Epitelial-Mesenquimal , Inflamação/tratamento farmacológico , Inflamação/patologia , Triterpenos Pentacíclicos/uso terapêutico , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
4.
Nucleic Acid Ther ; 33(6): 361-373, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943612

RESUMO

Conjugation of small interfering RNA (siRNA) with lipophilic molecules is one of the most promising approaches for delivering siRNA in vivo. The rate of molecular weight-dependent siRNA renal clearance is critical for the efficiency of this process. In this study, we prepared cholesterol-containing supramolecular complexes containing from three to eight antisense strands and examined their accumulation and silencing activity in vitro and in vivo. We have shown for the first time that such complexes with 2'F, 2'OMe, and LNA modifications exhibit interfering activity both in carrier-mediated and carrier-free modes. Silencing data from a xenograft tumor model show that 4 days after intravenous injection of cholesterol-containing monomers and supramolecular trimers, the levels of MDR1 mRNA in the tumor decreased by 85% and 68%, respectively. The in vivo accumulation data demonstrated that the formation of supramolecular structures with three or four antisense strands enhanced their accumulation in the liver. After addition of two PS modifications at the ends of antisense strands, 47% and 67% reductions of Ttr mRNA levels in the liver tissue were detected 7 days after administration of monomers and supramolecular trimers, respectively. Thus, we have obtained a new type of RNAi inducer that is convenient for synthesis and provides opportunities for modifications.


Assuntos
Inativação Gênica , Neoplasias , Humanos , RNA Interferente Pequeno/química , RNA de Cadeia Dupla , Colesterol/química , Neoplasias/genética , RNA Mensageiro/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003234

RESUMO

Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.


Assuntos
Asma , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Remodelação das Vias Aéreas , Asma/patologia , Pulmão/patologia , Fibrose , Inflamação/patologia , Biomarcadores
6.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895840

RESUMO

Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.

7.
Biochemistry (Mosc) ; 88(7): 995-1007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751869

RESUMO

Currently, a significant increase in the levels of circulating cell-free DNA (cfDNA) in the blood of patients is considered as a generally recognized marker of the development of oncological diseases. Although the tumor-associated cfDNA has been well studied, its biological functions remain unclear. In this work, we investigated the effect of cfDNA isolated from the blood serum of the mice with B16-F10 metastatic melanoma on the properties of the B16-F10 melanoma cells in vitro. It was found that the profile of cfDNA isolated from the blood serum of mice with melanoma differs significantly from the cfDNA isolated from the blood serum of healthy mice, and is similar to the genomic DNA of B16 cells with regards to abundance of oncogenes and mobile genetic elements (MGE). It was shown that the cfDNA of mice with melanoma penetrated into B16 cells, resulting in the increase in abundance of oncogenes and MGE fragments, and caused 5-fold increase of the mRNA level of the secreted DNase Dnase1l3 and a slight increase of the mRNA level of the Jun, Fos, Ras, and Myc oncogenes. cfDNA of the healthy mice caused increase of the mRNA level of intracellular regulatory DNase EndoG and 4-fold increase of the mRNA level of Fos and Ras oncogenes, which are well-known triggers of a large number of signal cascades, from apoptosis inhibition to increased tumor cell proliferation. Thus, it is obvious that the circulating cfDNA of tumor origin is able to penetrate into the cells and, despite the fact that no changes were found in the level of viability and migration activity of the tumor cells, cfDNA, even with a single exposure, can cause changes at the cellular level that increase oncogenicity of the recipient cells.


Assuntos
Ácidos Nucleicos Livres , Melanoma , Humanos , Animais , Camundongos , Soro , Desoxirribonucleases , RNA Mensageiro , Endodesoxirribonucleases
8.
Biochemistry (Mosc) ; 88(7): 1008-1021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751870

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by uncontrollable diffusive growth, resistance to chemo- and radiotherapy, and a high recurrence rate leading to a low survival rate of patients with GBM. Due to a large number of signaling pathways regulating GBM pathogenesis, one of the promising directions is development of novel anti-glioblastoma compounds based on natural metabolites capable of affecting multiple targets. Here, we investigated the antitumor potential of the semisynthetic triterpenoid soloxolone tryptamide (STA) against human glioblastoma U87 cells. STA efficiently blocked the growth of U87 cells in 2D and 3D cultures, enhanced adhesiveness of tumor cells, and displayed synergistic cytotoxicity with temozolomide. In silico analysis suggested that the anti-glioblastoma activity of STA can be explained by its direct interaction with EGFR, ERBB2, and AKT1 which play an important role in the regulation of GBM malignancy. Along with direct effect on U87 cells, STA normalized tumor microenvironment in murine heterotopic U87 xenograft model by suppressing the development of immature blood vessels and elastin production in the tumor tissue. Taken together, our results clearly demonstrate that STA can be a novel promising antitumor candidate for GMB treatment.

9.
Pharmaceutics ; 15(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37765155

RESUMO

In this study, the impact of different delivery systems on the cytokine-inducing, antiproliferative, and antitumor activities of short immunostimulatory double-stranded RNA (isRNA) was investigated. The delivery systems, consisting of the polycationic amphiphile 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20 tetraazahexacosan tetrahydrochloride (2X3), and the lipid-helper dioleoylphosphatidylethanolamine (DOPE), were equipped with polyethylene glycol lipoconjugates differing in molecular weight and structure. The main findings of this work are as follows: (i) significant activation of MCP-1 and INF-α, ß, and γ production in CBA mice occurs under the action of isRNA complexes with liposomes containing lipoconjugates with long PEG chains, while activation of MCP-1 and INF-γ, but not INF-α or ß, was observed under the action of isRNA lipoplexes containing lipoconjugates with short PEG chains; (ii) a pronounced antiproliferative effect on B16 melanoma cells in vitro, as well as an antitumor and hepatoprotective effect in vivo, was induced by isRNA pre-complexes with non-pegylated liposomes, while complexes containing lipoconjugates with long-chain liposomes were inactive; (iii) the antitumor activity of isRNA correlated with the efficiency of its accumulation in the cells and did not explicitly depend on the activation of cytokine and interferon production. Thus, the structure of the delivery system plays a vital role in determining the response to isRNA and allows for the choice of a delivery system depending on the desired effect.

10.
J Pers Med ; 13(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37623484

RESUMO

Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by the malignant transformation of bone marrow-derived myeloid progenitor cells with extremely short survival. To select the optimal treatment options and predict the response to therapy, the stratification of AML patients into risk groups based on genetic factors along with clinical characteristics is carried out. Despite this thorough approach, the therapy response and disease outcome for a particular patient with AML depends on several patient- and tumor-associated factors. Among these, tumor cell resistance to chemotherapeutic agents represents one of the main obstacles for improving survival outcomes in AML patients. In our study, a new prognostic scale for the risk stratification of AML patients based on the detection of the sensitivity or resistance of tumor cells to chemotherapeutic drugs in vitro as well as MDR1 mRNA/P-glycoprotein expression, tumor origin (primary or secondary), cytogenetic abnormalities, and aberrant immunophenotype was developed. This study included 53 patients diagnosed with AML. Patients who received intensive or non-intensive induction therapy were analyzed separately. Using correlation, ROC, and Cox regression analyses, we show that the risk stratification of AML patients in accordance with the developed prognostic scale correlates well with the response to therapy and represents an independent predictive factor for the overall survival of patients with newly diagnosed AML.

11.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901742

RESUMO

Inflammatory bowel disease (IBD) is a complex and multifactorial systemic disorder of the gastrointestinal tract and is strongly associated with the development of colorectal cancer. Despite extensive studies of IBD pathogenesis, the molecular mechanism of colitis-driven tumorigenesis is not yet fully understood. In the current animal-based study, we report a comprehensive bioinformatics analysis of multiple transcriptomics datasets from the colon tissue of mice with acute colitis and colitis-associated cancer (CAC). We performed intersection of differentially expressed genes (DEGs), their functional annotation, reconstruction, and topology analysis of gene association networks, which, when combined with the text mining approach, revealed that a set of key overexpressed genes involved in the regulation of colitis (C3, Tyrobp, Mmp3, Mmp9, Timp1) and CAC (Timp1, Adam8, Mmp7, Mmp13) occupied hub positions within explored colitis- and CAC-related regulomes. Further validation of obtained data in murine models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS-stimulated CAC fully confirmed the association of revealed hub genes with inflammatory and malignant lesions of colon tissue and demonstrated that genes encoding matrix metalloproteinases (acute colitis: Mmp3, Mmp9; CAC: Mmp7, Mmp13) can be used as a novel prognostic signature for colorectal neoplasia in IBD. Finally, using publicly available transcriptomics data, translational bridge interconnecting of listed colitis/CAC-associated core genes with the pathogenesis of ulcerative colitis, Crohn's disease, and colorectal cancer in humans was identified. Taken together, a set of key genes playing a core function in colon inflammation and CAC was revealed, which can serve both as promising molecular markers and therapeutic targets to control IBD and IBD-associated colorectal neoplasia.


Assuntos
Colite , Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Metaloproteinase 7 da Matriz , Metaloproteinase 13 da Matriz , Modelos Animais de Doenças , Colo/patologia , Colite/patologia , Neoplasias Colorretais/patologia , Transformação Celular Neoplásica/patologia , Doenças Inflamatórias Intestinais/patologia , Azoximetano/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Proteínas de Membrana
12.
Biomed Pharmacother ; 159: 114231, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640672

RESUMO

The anti-inflammatory potential of three cyanoenone-containing triterpenoids, including soloxolone methyl (SM), soloxolone (S) and its novel derivative bearing at the C-30 amidoxime moiety (SAO), was studied in murine models of acute inflammation. It was found that the compounds effectively suppressed the development of carrageenan-induced paw edema and peritonitis as well as lipopolysaccharide (LPS)-driven acute lung injury (ALI) with therapeutic outcomes comparable with that of the reference drugs indomethacin and dexamethasone. Non-immunogenic carrageenan-stimulated inflammation was more sensitive to the transformation of C-30 of SM compared with immunogenic LPS-induced inflammation: the anti-inflammatory properties of the studied compounds against carrageenan-induced paw edema and peritonitis decreased in the order of SAO > S > > SM, whereas the efficiency of these triterpenoids against LPS-driven ALI was similar (SAO ≈ S ≈ SM). Further studies demonstrated that soloxolone derivatives significantly inhibited a range of immune-related processes, including granulocyte influx and the expression of key pro-inflammatory cytokines and chemokines in the inflamed sites as well as the functional activity of macrophages. Moreover, SM was found to prevent inflammation-associated apoptosis of A549 pneumocytes and effectively inhibited the protease activity of thrombin (IC50 = 10.3 µM) tightly associated with rodent inflammatome. Taken together, our findings demonstrate that soloxolone derivatives can be considered as novel promising anti-inflammatory drug candidates with multi-targeted mechanism of action.


Assuntos
Lipopolissacarídeos , Peritonite , Animais , Camundongos , Anti-Inflamatórios , Carragenina/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peritonite/tratamento farmacológico
13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675165

RESUMO

Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.


Assuntos
Lesão Pulmonar Aguda , RNA Interferente Pequeno , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
14.
ACS Omega ; 8(51): 48813-48824, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162726

RESUMO

Given the pharmacophore properties of the nitrogen-containing moiety in the molecular structure of P-glycoprotein (P-gp) inhibitors, we report the evaluation of the P-gp inhibitory and MDR reversal activities of 2g, a 3-meta-pyridin-1,2,4-oxadiazole derivative of 18ßH-glycyrrhetinic acid. Through molecular docking, we have shown that 2g has the potential to directly interact with the transmembrane domain of P-gp with a low free binding energy (-10.2 kcal/mol). Using KB-8-5 human cervical carcinoma cells and RLS40 murine lymphosarcoma cells, both of which exhibit a multidrug-resistant (MDR) phenotype mediated by P-gp activation, we have shown that 2g, at nontoxic concentrations, effectively increased the intracellular accumulation of fluorescent P-gp substrates (rhodamine 123 or doxorubicin (DOX)), leading to a marked sensitization of the model cells to the cytotoxic effect of DOX. Considering the comparable activity of 2g with verapamil, a known P-gp inhibitor, 2g can be considered as a promising candidate for the development of agents capable of overcoming P-gp-mediated MDR in tumor cells.

15.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499287

RESUMO

Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Prognóstico , Pulmão/patologia , Pneumonia/metabolismo , Fibrose , Inflamação/patologia
16.
Pharmaceutics ; 14(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432733

RESUMO

Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines­cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines­murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines­lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.

17.
Bioorg Med Chem ; 76: 117089, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399911

RESUMO

Unsymmetric lipophilic polyamine derivatives are considered as potential antitumor agents. Here, a series of novel symmetric lipophilic polyamines (LPAs) based on norspermine and triethylenetetramine (TETA) backbones bearing alkyl substituents with different lengths (from decyl to octadecyl) at C(1) atom of glycerol were synthesized. Performed screening of the cytotoxicity of novel compounds on the panel of tumor cell lines (MCF-7, KB-3-1, B16) and non-malignant fibroblasts hFF3 in vitro revealed a correlation between the length of the aliphatic moieties in LPAs and their toxic effects - LPAs with the shortest decyl substituent were found to exhibit the highest cytotoxicity. Furthermore, norspermine-based LPAs displayed somewhat more pronounced cytotoxicity compared with their TETA-based counterparts. Further mechanistic studies demonstrated that hit LPAs containing the norspermine backbone and tetradecyl or decyl substituents efficiently induced apoptosis in KB-3-1 cells. Moreover, decyl-bearing LPA inhibited motility and enhanced adhesiveness of murine B16 melanoma cells in vitro, showing promising antimetastatic potential. Thus, developed novel symmetric norspermine-based LPAs can be considered as promising anticancer chemotherapeutic candidates.


Assuntos
Poliaminas , Animais , Camundongos , Poliaminas/farmacologia
18.
Pharmaceutics ; 14(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745743

RESUMO

In this investigation, we extensively studied the mechanism of antitumor activity of bovine pancreatic RNase A. Using confocal microscopy, we show that after RNase A penetration into HeLa and B16 cells, a part of the enzyme remains unbound with the ribonuclease inhibitor (RI), resulting in the decrease in cytosolic RNAs in both types of cells and rRNAs in the nucleoli of HeLa cells. Molecular docking indicates the ability of RNase A to form a complex with Ku70/Ku80 heterodimer, and microscopy data confirm its localization mostly inside the nucleus, which may underlie the mechanism of RNase A penetration into cells and its intracellular traffic. RNase A reduced migration and invasion of tumor cells in vitro. In vivo, in the metastatic model of melanoma, RNase A suppressed metastases in the lungs and changed the expression of EMT markers in the tissue adjacent to metastatic foci; this increased Cdh1 and decreased Tjp1, Fn and Vim, disrupting the favorable tumor microenvironment. A similar pattern was observed for all genes except for Fn in metastatic foci, indicating a decrease in the invasive potential of tumor cells. Bioinformatic analysis of RNase-A-susceptible miRNAs and their regulatory networks showed that the main processes modulated by RNase A in the tumor microenvironment are the regulation of cell adhesion and junction, cell cycle regulation and pathways associated with EMT and tumor progression.

19.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682893

RESUMO

It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and ßO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18ßH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and ß-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7-4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and ßO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and ßO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.


Assuntos
Antineoplásicos , Ácido Glicirretínico , Neoplasias , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Compostos de Epóxi/farmacologia , Óxido de Etileno , Ácido Glicirretínico/farmacologia , Camundongos , Estereoisomerismo
20.
Biomedicines ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35625754

RESUMO

Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA